3.83-3.94 (m, 2 H), 4.57-4.62 (m, 1 H, OCHO), 4.82 (dd, 1 H, J_{ab} = 19.5 Hz, J_{BX} = 1.88 Hz, C_{21} H), 4.98 (ddt, 1 H, J_{AB} = 19.5 Hz, $J_{AX} = 1.0$ Hz, C_{21} H); UV (EtOH) λ_{max} 214.9 nm (ϵ 12500); HRMS calcd 372.2301, found 372.2307 (M – DHP).

Acknowledgment. We are thankful to the Polish Academy of Sciences for financial support (Grant CPBP 01.13.2.25). We are very indebted to I. M. Waseman from Rikilt for performing the FT-IR spectrum of compound 15.

Registry No. 1, 20007-99-2; 2, 71563-68-3; 3, 71505-07-2; 4, 71563-69-4; 5, 115649-62-2; 6, 115562-13-5; 6 (hydrazone deriv), 115562-14-6; 7, 115590-14-2; 8, 115562-15-7; 9, 115562-16-8; 10, 115562-17-9; 10 (aldehyde deriv), 115562-18-0; 11, 115590-15-3; 12, 115562-19-1; 13, 115649-63-3; 14, 115562-20-4; 15, 115562-21-5; Ph₃P=C=C=O, 15596-07-3.

A Facile and Efficient Preparative Method of Methyl 2-Arylpropanoates by Treatment of **Propiophenones and Their Derivatives with Iodine or Iodine Chlorides**

Takayoshi Yamauchi,* Kaneaki Hattori, Kenji Nakao, and Kentaro Tamaki

Sakai Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., 1-1-53, Takasu-cho, Sakai-shi, Osaka-fu 590, Japan

Received December 7, 1987

Several 2-arylpropionic acids have been known as important pharmaceutical agents exhibiting nonsteroidal antiinflammatory activities¹ and many preparative methods of the acids have so far been developed.^{1b,c} We also presented several new methods for the preparation of the acids or their alkyl esters from propiophenones 1 and related substances via 1,2-aryl group migration.²⁻⁵

Quite recently a patent work⁶ appeared which revealed the formation of methyl 2-arylpropanoates 4 by the treatment of 1 with iodine in trimethyl orthoformate (TMOF). This prompted us to report our similar work on I_2 -, ICl-, or ICl₃-mediated facile preparation of 4 from 1, its dimethyl ketals 2, and 1-aryl-1-methoxy-1-propenes 3 via aryl migration.⁷ The reagent ICl_3 was proved to be very effective for this transformation for the first time. It is worth noting that the reaction of 2-alkyl-2-phenyl-1,3dioxolanes with ICl in dichloromethane gave 2-chloroethyl esters of 2-phenylalkanoic acids via 1,2-aryl migration.⁸

The reactions of 1, 2, or 3 (R = H, Bu^i , CH_3O , Br, F) with I_2 , ICl, or ICl₃ were generally carried out by the addition

Angew. Chem., Int. Ed. Engl. 1984, 23, 413.
 (2) Fujii, K.; Nakao, K.; Yamauchi, T. Synthesis 1982, 456. Yamauchi, T.; Nakao, K.; Fujii, K. J. Chem. Soc., Perkin Trans. 1 1987, 1433.
 (3) Fujii, K.; Nakao, K.; Yamauchi, T. Synthesis 1983, 444. Yamauchi, T. Synthesis 1983, 444. Yamauchi, T. Synthesis 1983, 444. Yamauchi, T. Synthesis 1983, 445. Yamauchi, Yamauchi, T. Synthesis 1983, 445. Yamauchi, Yamau

T.; Nakao, K.; Fujii, K. J. Chem. Soc., Perkin Trans. 1 1987, 1255. (4) Uemura, S.; Fukuzawa, S.; Yamauchi, T.; Hattori, K.; Mizutaki, S.;

Tamaki, K. J. Chem. Soc., Chem. Commun. 1984, 426; J. Chem. Soc., Perkin Trans. 1 1986, 1983.

(5) Yamauchi, T.; Hattori, K.; Nakao, K.; Tamaki, K. Synthesis 1986,
1044; Bull. Chem. Soc. Jpn. 1987, 60, 4015.
(6) Citterio, A.; Tinucci, L.; Filippini, L.; Belli, A. Eur. Pat. Appl. EP

171 840 (Chem. Abstr. 1986, 105, 6321p). (7) (a) Yamauchi, T.; Hattori, K.; Nakao, K.; Tamaki, K. Japan Pat.

Appl. 1986, 81807. (b) Presented at the 54th Annual Meeting of the Chemical Society of Japan, Tokyo, April 1987.
(8) Goosen, A.; McCleland, C. W. J. Chem. Soc., Chem. Commun.

1982, 1311.

Table I. Preparation of Methyl 2-Arylpropanoates (4)^a

		product and isolated yield, %			
starting compd	reagent (equiv) ^b	4	5	6	7
1 (R = H)	I ₂ (2.0)	66	0	24	0
1 (R = H)	ICl_3 (1.2)	62	d	d	26
$1 (R = Bu^i)$	I_2 (1.2)	23	69	2	0
$1 (R = Bu^i)$	$I_2(2.0)$	98	0	0	0
$1 (R = Bu^i)$	ICl (1.0)	87	0	0	d
$1 (R = Bu^i)$	ICl ₃ (1.1)	97	0	0	d
$1 (R = CH_3O)$	I_2 (1.2)	85	0	0	0
1 (R = Br)	$I_2(2.0)$	0	1	48^{c}	0
$1 (\mathbf{R} = \mathbf{Br})$	ICl (1.2)	9	80	d	d
1 (R = Br)	ICl_3 (1.2)	73	d	d	18
1 (R = F)	I_2 (2.0)	0 ^e	0	0	d
1 (R = F)	ICl ₃ (1.2)	52	d	d	35
2 (R = H)	I_2 (2.0)	60	0	39	0
2 (R = H)	ICl_{3} (1.2)	55	d	d	32
$2 (R = Bu^{i})$	I_2 (1.2)	30	64	0	0
$2 (R = Bu^i)$	$I_{2}(2.0)$	93	0	0	0
$2 (R = Bu^i)$	ICl (1.2)	74	d	d	d
$2 (R = CH_3O)$	I_2 (1.2)	98	0	0	0
2 (R = Br)	I_2 (2.0)	0 ⁴	4	2	0
$3 (R = Bu^i)$	$I_{2}(1.0)$	20	62	17	0
$3 (R = Bu^i)$	$I_2(2.0)$	98	0	0	0
$3 (R = Bu^i)$	ICl (1.2)	80	d	d	d
$3 (R = CH_3O)$	I_2 (1.2)	88	0	0	0
$3 (R = CH_3O)$	ICl (1.0)	81	d	d	d

^aCarried out using 1 (10 mmol), 2 (10 mmol), or 3 (5 mmol) in TMOF (5.3 g) at 23 °C for 24 h. ^bEquivalent to the starting com-pound. ^cRecovered 1, 29%. ^dNot determined. ^eRecovered 1, 92%. / Recovered 1, 92%.

of an iodine compound to a solution of 1, 2, or 3 in TMOF at 23 °C, and the mixture was stirred for 24 h at the same

temperature. The esters 4, 1-aryl-1,1-dimethoxy-2-iodopropanes 5, and aryl 1-iodoethyl ketones 6, or aryl 1chloroethyl ketones 7 were the products, the amount of which depended on the reaction conditions. Typical re-

sults are shown in Table I. The reactions in other solvents such as methanol and dichloromethane were slower and gave much lower yields of 4. The data shown in the table disclosed the following: (1) the I_2 (2 equiv to the substrate)/TMOF system is generally suitable for preparation of 4, (2) the reactivity order of iodine compound is $ICl_3 >$

⁽¹⁾ See, for example: (a) Shen, T. Y. Angew. Chem., Int. Ed. Engl. 1972, 11, 460. (b) Rieu, J.-P.; Boucherle, A.; Cousse, H.; Mouzin, G. Tetrahedron 1986, 42, 4095. (c) Giordano, C.; Castaldi, G.; Uggeri, F.

4859

 $ICl > I_2$ and the reagent ICl_3 is especially useful for the rearrangement of 1 (R = Br, F), (3) treatment of 1 (R =H, Br, F), or 2 (R = H) with ICl_3 afforded 4 with the formation of 7, and (4) the reactivity of the substrate is in the order of $R = CH_3O > Bu^i > H > Br > F$ as expected. The formation of 6 ($\ddot{R} = H$) and 6 (R = Br) from the corresponding 1 with 2 equiv of I_2 and the formation of 5 (R = Buⁱ) from 1 (R = Buⁱ) with 1.2 equiv of I_2 suggest that 4 was formed via these compounds. In fact, we confirmed separately that the ketal 5 ($R = Bu^{i}$) is converted to 4 ($\mathbf{R} = \mathbf{B}\mathbf{u}^{i}$) quantitatively by treatment with 1 equiv of I_2 in TMOF at 23 °C for 24 h, while 6 (R = Buⁱ) scarcely afforded 4 ($\mathbf{R} = \mathbf{Bu}^{i}$) under similar conditions. Thus the ester 4 seems to be formed via 5 as shown below, methyl iodide being trapped and identified spectroscopically.

Experimental Section

¹H NMR spectra were recorded with a JEOL FX-40 Q (90 MHz) instrument in $CDCl_3$ with Me_4Si as an internal standard. GLC analysis was carried out with a Shimadzu GC-7AS apparatus using 10% DC-200 on a Chromosorb W (AW-DMCS) column (3 $mm \times 3 m$).

Propiophenones 1 ($R = H, CH_3O, Br, F$), solvent, and inorganic materials were commercial products of the purest standard. Compounds 1 (R = Bu^{i})⁴ and 2⁹ were prepared by the reported methods. The yield and boiling point of 2 prepared from 1 are as follows: 2 (R = H) 71%, bp 75-77 °C/10 Torr; 2 (R = Buⁱ) 94%, bp 92-97 °C/1 Torr; 2 ($\mathbf{R} = CH_3O$) 68%, bp 90-93 °C/1 Torr; 2 (R = Br) 98%, bp 93-96 °C/2 Torr.

Preparation of 3 ($\mathbf{R} = \mathbf{Bu}^i$) and 3 ($\mathbf{R} = \mathbf{CH}_3\mathbf{O}$). A mixture of 2 ($R = Bu^i$) (11.8 g, 50 mmol) and methanesulfonic acid (0.1 g, 1 mmol) was heated at 100-105 °C for 2 h. The resulting mixture was distilled in vacuo to give an isomeric mixture of (E)and (Z)-1-(4-isobutylphenyl)-1-methoxy-1-propene (3, $R = Bu^{i}$) as a colorless oil (8.1 g, 79.3%), E/Z = 27/73, by ¹H NMR:¹⁰ bp 92-96.5 °C/1 Torr; Z isomer δ 0.93 (6 H, d), 1.81 (3 H, d), 1.84 (1 H, m), 2.49 (2 H, d), 3.55 (3 H, s), 5.35 (1 H, q), 7.2-7.4 (4 H, m); E isomer δ 0.93 (6 H, d), 1.72 (3 H, d), 1.84 (1 H, m), 2.49 (2 H, d), 3.63 (3 H, s), 4.78 (1 H, q), 7.2-7.4 (4 H, m). Anal. Calcd for C14H20O: C, 82.30; H, 9.87. Found: C, 82.35; H, 9.82. Similarly, an isomeric mixture of (E)- and (Z)-1-methoxy-1-(4-methoxyphenyl)-1-propene (3, $R = CH_3O$) was prepared in 88% yield at bp 90-93 °C/0.8 Torr, E/Z = 34/66, by ¹H NMR:¹⁰ Z isomer δ 1.76 (3 H, d), 3.49 (3 H, s), 3.77 (3 H, s), 5.20 (1 H, q), 6.75–8.4 (4 H, m); E isomer δ 1.65 (3 H, d), 3.58 (3 H, s), 3.77 (3 H, s), 4.72 (1 H, q), 6.75-8.40 (4 H, m). Anal. Calcd for $C_{11}H_{14}O_2$: C, 74.13; H, 7.92. Found: C, 73.97; H, 8.08.

Treatment of 1, 2, or 3 with Iodine Compound for the Preparation of 4, 5, and/or 6. A typical experimental procedure is as follows. Iodine (3.05 g, 12 mmol) was added to a solution of 1 (R = Buⁱ) (1.90 g, 10 mmol) in TMOF (5.3 g) at 23 °C and the mixture was stirred for 24 h. Aqueous sodium thiosulfate (10%, 20 mL) was added and the resulting brown solution was extracted with $CHCl_3$ (2 × 30 mL). The extract was dried (MgSO₄) and the solvent was evaporated under reduced pressure. An oily residue was purified by column chromatography on SiO_2 [hexane-EtOAc (30:1-20:1) as eluent] to give methyl 2-(4-isobutylphenyl)propanoate (4, $R = Bu^{i})^{5}$ (0.5 g, 23% yield) and 1,1-dimethoxy-1-(4-isobutylphenyl)-2-iodopropane $(5, R = Bu^i)$ (2.50 g, 69% yield) together with a small amount of 6 ($R = Bu^i$) (2% yield) as a colorless oil, respectively. 5 (R = Buⁱ): δ 0.90 (6

H, d), 1.73 (3 H, d), 1.6–2.1 (1 H, m), 2.48 (2 H, d), 3.19 (3 H, s), 3.32 (3 H, s), 4.58 (1 H, q), 7.0-7.5 (4 H, m). Anal. Calcd for C15H23O2I: C, 49.73; H, 6.40. Found: C, 49.80; H, 6.33. Similar treatment of 1 (R = Buⁱ) with I_2 (5.04 g, 20 mmol) afforded 2.13 g (98% isolated yield) of 4 ($R = Bu^i$). For identification of the produced methyl iodide, the reaction mixture was distilled directly under reduced pressure, the vapor was trapped by a cold trap at -78 °C, and the trapped liquid substance (a mixture of CH_3I and TMOF) was analyzed by ¹H NMR and GLC.

The treatment of 1 ($\mathbf{R} = \mathbf{Br}$) (2.13 g, 10 mmol) with iodine (5.04 g, 20 mmol) in TMOF (5.3 g) at 23 °C for 24 h afforded 1-(4bromophenyl)-1,1-dimethoxy-2-iodopropane (5, R = Br) (47 mg, 0.12 mmol, 1.2% yield) and 4-bromophenyl 1-iodoethyl ketone (6, R = Br) (1.62 g, 4.8 mmol, 48% yield). 5 (R = Br) δ 1.70 (3 H, d), 3.16 (3 H, s), 3.27 (3 H, s), 4.52 (1 H, q), 7.3-7.5 (4 H, m). Anal. Calcd for C₁₁H₁₄O₂BrI: C, 34.31; H, 3.66. Found: C, 34.02; H, 3.53. 6 (R = Br): δ 2.03 (3 H, d), 5.38 (1 H, q), 7.4–7.9 (4 H, m). Anal. Calcd for C₉H₈OBrI: C, 31.89; H, 2.18. Found: C, 29.67: H. 2.20.

The compounds 5 and 6 were also prepared separately as follows and used as authentic samples for ¹H NMR and GLC. The ketal 2 (R = Buⁱ) was treated with 1.2 equiv of I₂ in TMOF at 23 °C for 24 h and a normal workup procedure of the mixture afforded 5 (R = Buⁱ) in 64% yield. A mixture of methanol (20 mL), 2 N sulfuric acid (1 mL), and 5 (R = Buⁱ) (1.60 g, 4.4 mmol) was stirred at 60 °C for 1 h. After it had been cooled down, the solvent was evaporated under reduced pressure to leave an oily residue which was added to CHCl₃ (20 mL) and 2% aqueous sodiudm thiosulfate (10 mL). An organic layer was separated and the aqueous layer was extracted with $CHCl_3$ (10 mL). The combined organic layers were dried (MgSO₄) and evaporated to leave 6 ($R = Bu^i$) (1.36 g, 97% yield) as a light yellow oil: 6 (R = Buⁱ) δ 0.90 (6 H, d), 1.88 (1 H, m), 2.04 (3 H, d), 2.52 (2 H, d), 5.45 (1 H, q), 7.18 (2 H, d), 7.89 (2 H, d). Anal. Calcd for $C_{13}H_{17}OI$: C, 49.38; H, 5.42. Found: C, 49.68; H, 5.64.

Acknowledgment. We thank Dr. Sakae Uemura of Kyoto University for useful discussion and reading the manuscript.

Registry No. 1 (R = H), 93-55-0; 1 (R = Bui), 59771-24-3; 1 $(R = CH_3O)$, 121-97-1; 1 (R = Br), 10342-83-3; 1 (R = F), 456-03-1; 2 (R = H), 25310-92-3; 2 (R = Bui), 66202-89-9; 2 (R = CH₃O), 115943-56-1; 2 ($\mathbf{R} = \mathbf{Br}$), 115943-57-2; (*E*)-3 ($\mathbf{R} = \mathbf{Bui}$), 115943-58-3; (Z)-3 (R = Bui), 115943-59-4; (E)-3 (R = CH₃O), 58889-88-6; (Z)-3 $(R = CH_3O)$, 58889-89-7; 4 (R = H), 31508-44-8; 4 (R = Bui), 61566-34-5; 4 (R = CH₃O), 50415-73-1; 4 (R = Br), 83636-46-8; 4 (R = F), 50415-71-9; 5 (R = Bui), 87498-05-3; 5 (R = Br), 115943-60-7; 6 (R = H), 6084-15-7; 6 (R = Br), 115943-61-8; 6 (R = Bui), 115943-62-9; 7 (R = H), 6084-17-9; 7 (R = Br), 87010-95-5; 7 (R = F), 81112-09-6; I_2 , 7553-56-2; ICl_3 , 865-44-1; ICl, 7790-99-0.

A Versatile and Convenient Multigram Synthesis of Methylidenemalonic Acid Diesters¹

Jean-Luc De Kevser.* Christian J. C. De Cock. Jacques H. Poupaert, and Pierre Dumont

Department of Medicinal Chemistry, Catholic University of Louvain, Avenue E. Mounier U.C.L. 7340, B-1200 Brussels, Belgium

Received March 22, 1988

Owing to their multifunctionality, dialkyl methylidenemalonates 3 are useful synthetic intermediates in Michael, Diels-Alder, cyclopropanation, and epoxidation reactions²⁻⁴ and in polymer synthesis.⁵

⁽⁹⁾ Higgins, S. D.; Thomas, C. B. J. Chem. Soc., Perkin Trans. 1 1982, 235.

⁽¹⁰⁾ See, for example: (a) Uijttewaal, A. P.; Jonkers, F. L.; Van der Gen, A. J. Org. Chem. 1979, 44, 3157. (b) Gompper, R.; Vogt, H.-H. Chem. Ber. 1981, 114, 2866.

⁽¹⁾ Bru-Magniez, N.; De Cock, Ch. J. C.; Poupaert, J. H.; De Keyser, J.-L.; Dumont, P. French Patent Appl. 8702991. (2) Baum, K.; Guest, A. M. U. S. Patent 4 291 171, 1981

⁽³⁾ Raucher, S.; Lawrence, R. F. Tetrahedron Lett. 1983, 24, 2927.